ESPB vs TPVB in modified radical mastectomy

Sidharth B Venu, Yaasir Bin Malick and Venugopalan PG

DOI: https://doi.org/10.33545/26648849.2024.v6.i1a.40

Abstract

Background: Effective pain management following modified radical mastectomy (MRM) is essential for patient comfort and recovery. Erector spinae plane block (ESPB) and thoracic paravertebral block (TPVB) have emerged as promising regional anesthesia techniques for postoperative pain control. This study aims to compare the analgesic efficacy, safety, and perioperative outcomes of ESPB and TPVB in patients undergoing MRM.

Methods: 70 adult female patients, scheduled for modified radical mastectomy were randomized into two groups, Group P (n=35, received USG guided TPVB with 20 ml of 0.25% bupivacaine prior to GA) & Group E (n=35, received USG guided ESPB with 20 ml of 0.25% bupivacaine prior to GA). Heart Rate (HR), Mean Arterial Pressure (MAP), post-op VAS score, 1st analgesic request time, 24 hr morphine consumption & complications recorded.

Results: 24 hr morphine consumption & 1st analgesic request time comparable between both groups (P = 0.32 and 0.075, respectively). No significant difference in the VAS scores between both groups. 4 patients in group P developed pneumothorax with no significant differences between both groups (P = 0.114). Nausea and vomiting incidence was comparable between both groups. Both groups showed stable hemodynamic profile.

Conclusion: Both TPVB and ESPB provided effective post mastectomy analgesia and reduced both intra & post-operative opioid consumption.

Keywords: Erector spinae plane block, modified radical mastectomy, paravertebral block, visual analogue scale

Introduction

Postoperative pain management is essential for optimizing recovery and patient satisfaction after modified radical mastectomy, a common procedure for breast cancer treatment. Regional anesthesia techniques such as erector spinae plane (ESP) block and paravertebral block (PVB) have shown promise in providing effective pain relief. However, comparative studies evaluating their role specifically in modified radical mastectomy are limited. This prospective randomized trial aims to directly compare ESP block versus PVB in terms of pain control, opioid usage, and safety outcomes in this patient population. The findings will help clarify the optimal analgesic approach for enhancing postoperative recovery and patient comfort in breast cancer surgery.

Aim

This prospective RCT aims to compare the efficacy, opioid consumption, and safety profile of erector spinae plane (ESP) block versus paravertebral block (PVB) for pain control after modified radical mastectomy.

Materials and Methods

This was a prospective double blind randomized controlled trial study conducted in a tertiary medical university hospital in Trivandrum over a 12-month period from January 2023 to December 2023. 70 ASA I & II adult females between the ages of 20 and 60 years scheduled for unilateral modified radical mastectomy were enrolled in this study after obtaining written informed consent and approval from the institutional ethics committee. Patients with cardio respiratory conditions, psychiatric disorders, neurologic deficits, pregnancy, LA allergy, local infections, and anticoagulants were excluded from the study.
All participants were randomly allocated (allocation ratio 1:1) into two groups: Group P (PVB group) & Group E (ESPB group) using computer-generated randomization. General anaesthesia & regional block were done by one anaesthetist whereas data collection was done by an anaesthetist, blinded to group allocation; however all surgeries were conducted by the same surgeon. All the participants underwent a detailed pre-anaesthetic check-up and were briefed on the VAS pain score on the pre-operative day. On the operative day, upon arrival in the OR suite, all participants were connected to standard monitors (ECG, NIBP, pulse oximeter) and IV access was secured. Additionally, all participants were premedicated with Inj. Midazolam 1 mg IV and Inj. Ondansetron 4 mg IV and positioned laterally.

Fig 2: T5 vertebral level Sonoanatomy
Under strict asepsis and ultrasound guidance, all participants in Group P (PVB) received a thoracic paravertebral block at the T1 level with 20 ml of 0.25% bupivacaine on the ipsilateral side of surgery, while all participants in Group E (ESPB) received an erector spinae plane block at the T1 level with 20 ml of 0.25% bupivacaine on the ipsilateral side of surgery. After performing the regional anesthetic block, all participants were positioned supine, preoxygenated, and general anesthesia was induced with Inj. Propofol 2 mg/kg IV, Inj. Fentanyl 1 μg/kg, and Inj. Atracurium 0.5 mg/kg. They were intubated with COETT #7 and secured, then connected to the anesthesia machine (VCV mode, TV: 400 ml, f-12/min, I: E-1:2) and maintained on O2/Air/Sevoflurane with intermittent boluses of Atracurium 5 mg IV.

At the end of surgery, all anesthetic gases were tapered and cut, and neuromuscular blockade reversed with Inj. Neostigmine 50 μg/kg IV & Inj. Glycopyrrolate 10 μg/kg IV. Extubation was performed after achieving extubation criteria, and patients were then transferred to the PACU. The main aim of the research was to gauge the total amount of morphine consumed by patients within 24 hours following their surgery. If patients reported a pain score higher than 3 on the Visual Analog Scale (VAS), they were administered morphine intravenously at a dosage of 0.1 mg/kg for pain relief. Secondary goals involved evaluating pain levels using the 10 cm VAS upon admission to the Post-Anesthesia Care Unit (PACU), and subsequently at intervals of 2, 4, 6, 8, 12, 18, and 24 hours post-surgery, as well as determining the duration until the first request for pain relief. Measurements of Mean Blood Pressure (MBP) and Heart Rate (HR) were taken at various time points: initially at baseline (T0) before the regional block, then at 5, 10, and 15 minutes after the block (T1–T3), at the time of skin incision, and every 30 minutes thereafter until the conclusion of surgery (T4–T6). Postoperative HR and MBP readings were taken upon arrival at the PACU and subsequently at intervals of 2, 4, 6, 8, 12, 16, 20, and 24 hours post-surgery (T7–T17). Complications monitored included postoperative nausea and vomiting (PONV), with intravenous administration of metoclopramide 10 mg as required. Other complications associated with either the medication used or the techniques employed (e.g., pneumothorax, local anesthetic toxicity) were documented for up to 24 hours post-surgery.

Statistical analysis
Variables and data collected over 24 hours were entered into an Excel spreadsheet and analyzed using SPSS version 25 software. Numerical parametric data were presented as mean ± SD and compared using Student’s independent t-test. Non-parametric data (VAS) were presented as the median ± IQR and compared using the Mann–Whitney U test. Categorical variables were expressed as number and percentage (%) and were analysed using the Chi-square test or Fisher’s exact test when appropriate. p < 0.05 was considered significant.

Results
The demographic data, ASA class and duration of surgery in both groups were comparable & no significant differences were observed [Table 1].

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group P</th>
<th>Group E</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>41±11.8</td>
<td>37.7±12.9</td>
<td>0.279</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>27.7±5.4</td>
<td>28.4±5.4</td>
<td>0.45</td>
</tr>
<tr>
<td>ASA (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>20(57.1%)</td>
<td>22(62.9%)</td>
<td>0.62</td>
</tr>
<tr>
<td>II</td>
<td>15(42.8%)</td>
<td>13(37.1%)</td>
<td></td>
</tr>
<tr>
<td>Duration of surgery (min)</td>
<td>173.2±8.7</td>
<td>170±8.2</td>
<td>0.11</td>
</tr>
</tbody>
</table>

24 hr morphine use, 1st analgesic request time, PONV were comparable & no significant differences were observed between the 2 groups [Table 2]. 4 patients developed pneumothorax in group P vs 0 in group E, with no significant difference between both groups (P = 0.114). One patient needed ICD insertion while in three patients, pneumothorax resolved spontaneously [Table 2]. No other complications were noticed. No block failure was observed in both groups.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group P</th>
<th>Group E</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total post-op morphine (mg)</td>
<td>27.3±2.9</td>
<td>26.7±2.1</td>
<td>0.32</td>
</tr>
<tr>
<td>1st analgesic request time (hr)</td>
<td>6.35±0.42</td>
<td>6.58±0.60</td>
<td>0.075</td>
</tr>
<tr>
<td>Nausea (%)</td>
<td>12(34.3%)</td>
<td>10(28.6%)</td>
<td>0.60</td>
</tr>
<tr>
<td>Vomiting (%)</td>
<td>4(11.4%)</td>
<td>3(8.6%)</td>
<td>0.69</td>
</tr>
<tr>
<td>Pneumothorax (%)</td>
<td>4(11.4%)</td>
<td>0(0.0%)</td>
<td>0.114</td>
</tr>
</tbody>
</table>

Fig 3: Post-Op VAS Scores
No notable disparities were observed in postoperative Visual Analog Scale (VAS) pain scores between the two groups. However, it's worth noting that VAS scores escalated to levels exceeding 3 in both groups 6 hours following the surgical procedure (Figure 3). Both groups showed intraoperative & postoperative haemodynamic stability with no significant difference noted between them (Figure 4).

Discussion

Injecting LA into the paravertebral space or performing ESPB blocks spinal nerve roots, causing analgesia by diffusion into the epidural and adjacent spaces. Both techniques are effective for post-mastectomy pain management, reducing opioid consumption and maintaining stable hemodynamics. ESPB shows lower complication rates compared to TPVB, particularly in regards to pneumothorax risk. Though complications may arise due to patient factors or technique challenges, ultrasound guidance can mitigate risks. Studies underscore ESPB's efficacy and ease of use, with comparable results to TPVB in pain reduction after breast surgery. Further research should explore different LA types and concentrations and compare ESPB with other techniques for optimal pain management, particularly regarding pneumothorax prevention.

Conclusion

Both TPVB and ESPB effectively control pain after breast surgeries, showing comparable durations of pain relief, reduced intraoperative and postoperative opioid usage, and stable hemodynamics. US-guided ESPB emerges as a promising alternative to TPVB due to its simplicity and reliance on superficial anatomical landmarks, potentially minimizing complications especially pneumothorax and injury to deeper structures.

References

15. El Mourad MB, Amer AF. Effects of adding dexamethasone or ketamine to bupivacaine for

How to Cite This Article

Creative Commons (CC) License
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.